OLAP systems have been traditionally categorized using the following taxonomy.

'MOLAP' is the 'classic' form of OLAP and is sometimes referred to as just OLAP. MOLAP stores this data in an optimized multi-dimensional array storage, rather than in a relational database. Therefore it requires the pre-computation and storage of information in the cube - the operation known as processing.

ROLAP works directly with relational databases. The base data and the dimension tables are stored as relational tables and new tables are created to hold the aggregated information. Depends on a specialized schema design.This methodology relies on manipulating the data stored in the relational database to give the appearance of traditional OLAP's slicing and dicing functionality. In essence, each action of slicing and dicing is equivalent to adding a "WHERE" clause in the SQL statement.

There is no clear agreement across the industry as to what constitutes "Hybrid OLAP", except that a database will divide data between relational and specialized storage. For example, for some vendors, a HOLAP database will use relational tables to hold the larger quantities of detailed data, and use specialized storage for at least some aspects of the smaller quantities of more-aggregate or less-detailed data.

Each type has certain benefits, although there is disagreement about the specifics of the benefits between providers.

  • Some MOLAP implementations are prone to database explosion, a phenomenon causing vast amounts of storage space to be used by MOLAP databases when certain common conditions are met: high number of dimensions, pre-calculated results and sparse multidimensional data.
  • MOLAP generally delivers better performance due to specialized indexing and storage optimizations. MOLAP also needs less storage space compared to ROLAP because the specialized storage typically includes compression techniques.
  • ROLAP is generally more scalable. However, large volume pre-processing is difficult to implement efficiently so it is frequently skipped. ROLAP query performance can therefore suffer tremendously.
  • Since ROLAP relies more on the database to perform calculations, it has more limitations in the specialized functions it can use.
  • HOLAP encompasses a range of solutions that attempt to mix the best of ROLAP and MOLAP. It can generally pre-process swiftly, scale well, and offer good function support.

Other types
The following acronyms are also sometimes used, although they are not as widespread as the ones above:

  • WOLAP - Web-based OLAP
  • DOLAP - Desktop OLAP
  • RTOLAP - Real-Time OLAP