Certified Data Mining and Warehousing Professional Architecture Types

Architecture Types

Introduction to Data mining Architecture

Data mining is described as a process of discover or extracting interesting knowledge from large amounts of data stored in multiple data sources such as file systems, databases, data warehouses and etc.  This knowledge contributes a lot of benefits to business strategies, scientific, medical research, governments and individual.

Data is collected explosively every minute through business transactions and stored in relational database systems. In order to provide insight about the business processes, data warehouse systems have been built to provide analytical reports for business users to make decisions. Data is now stored in database and/or data warehouse system so data mining system should be designed to decouple or couple with these systems. This question leads to four possible architectures of a data mining system as follows:

  • No-coupling: in this architecture, data mining system does not utilize any functionality of a database or data warehouse system. A no-coupling data mining system retrieves data from a particular data sources such as file system, processes data using major data mining algorithms and stores results into file system. The no-coupling data mining architecture does not take any advantages of database or data warehouse that is already very efficient in organizing, storing, accessing and retrieving data. The no-coupling architecture is considered a poor architecture for data mining system however it is used for simple data mining processes.
  • Loose Coupling: in this architecture, data mining system uses database or data warehouse for data retrieval. In loose coupling data mining architecture, data mining system retrieves data from database or data warehouse, processes data using data mining algorithms and stores the result in those systems. This architecture is mainly for memory-based data mining system that does not require high scalability and high performance.
  • Semi-tight Coupling: in semi-tight coupling data mining architecture, beside linking to database or data warehouse system, data mining system uses several features of database or data warehouse systems to perform some data mining tasks including sorting, indexing, aggregation…etc. In this architecture, some intermediate result can be stored in database or data warehouse system for better performance.
  • Tight Coupling: in tight coupling data mining architecture, database or data warehouse is treated as an information retrieval component of data mining system using integration. All the features of database or data warehouse are used to perform data mining tasks. This architecture provides system scalability, high performance and integrated information.

There are three tiers in the tight-coupling data mining architecture:

  1. Data layer: as mentioned above, data layer can be database and/or data warehouse systems. This layer is an interface for all data sources. Data mining results are stored in data layer so it can be presented to end-user in form of reports or other kind of visualization.
  2. Data mining application layer is used to retrieve data from database. Some transformation routine can be performed here to transform data into desired format. Then data is processed using various data mining algorithms.
  3. Front-end layer provides intuitive and friendly user interface for end-user to interact with data mining system. Data mining result presented in visualization form to the user in the front-end layer.
 For Support