LAN Types Ethernet Token Ring FDDI

There are different types of Media Access Control methods in a LAN, they are mentioned below :

Ethernet - Ethernet is a 10Mbps LAN that uses the Carrier Sense Multiple Access with Collision Detection (CSMA/CD) protocol to control access network. When an endstation (network device) transmits data, every endstation on the LAN receives it. Each endstation checks the data packet to see whether the destination address matches its own address. If the addresses match, the endstation accepts and processes the packet. If they do not match, it disregards the packet. If two endstations transmit data simultaneously, a collision occurs and the result is a composite, garbled message. All endstations on the network, including the transmitting endstations, detect the collision and ignore the message. Each endstation that wants to transmit waits a random amount of time and then attempts to transmit again. This method is usually used for traditional Ethernet LAN.

Token Ring - This is a 4-Mbps or 16-Mbps token-passing method, operating in a ring topology. Devices on a Token Ring network get access to the media through token passing. Token and data pass to each station on the ring. The devices pass the token around the ring until one of the computer who wants to transmit data , takes the token and replaces it with a frame. Each device passes the frame to the next device, until the frame reaches its destination. As the frame passes to the intended recipient, the recipient sets certain bits in the frame to indicate that it received the frame. The original sender of the frame strips the frame data off the ring and issues a new token.

Fast Ethernet - This is an extension of 10Mbps Ethernet standard and supports speed upto 100Mbps. The access method used is CSMA/CD .For physical connections Star wiring topology is used. Fast Ethernet is becoming very popular as an upgradation from 10Mbps Ethernet LAN to Fast Ethernet LAN is quite easy.

FDDI (Fiber Distributed Data Interface) - FDDI provides data speed at 100Mbps which is faster than Token Ring and Ethernet LANs . FDDI comprise two independent, counter-rotating rings : a primary ring and a secondary ring. Data flows in opposite directions on the rings. The counter-rotating ring architecture prevents data loss in the event of a link failure, a node failure, or the failure of both the primary and secondary links between any two nodes. This technology is usually implemented for a backbone network.