### IP addresses: Networks and hosts

An IP address is a 32-bit number that uniquely identifies a host (computer or other device, such as a printer or router) on a TCP/IP network.

IP addresses are normally expressed in dotted-decimal format, with four numbers separated by periods, such as 192.168.123.132. To understand how subnet masks are used to distinguish between hosts, networks, and subnetworks, examine an IP address in binary notation.

For example, the dotted-decimal IP address 192.168.123.132 is (in binary notation) the 32 bit number 110000000101000111101110000100. This number may be hard to make sense of, so divide it into four parts of eight binary digits.

These eight bit sections are known as octets. The example IP address, then, becomes 11000000.10101000.01111011.10000100. This number only makes a little more sense, so for most uses, convert the binary address into dotted-decimal format (192.168.123.132). The decimal numbers separated by periods are the octets converted from binary to decimal notation.

For a TCP/IP wide area network (WAN) to work efficiently as a collection of networks, the routers that pass packets of data between networks do not know the exact location of a host for which a packet of information is destined. Routers only know what network the host is a member of and use information stored in their route table to determine how to get the packet to the destination host's network. After the packet is delivered to the destination's network, the packet is delivered to the appropriate host.

For this process to work, an IP address has two parts. The first part of an IP address is used as a network address, the last part as a host address. If you take the example 192.168.123.132 and divide it into these two parts you get the following:

```   192.168.123.    Network
.132 Host
```
-or-
```   192.168.123.0 - network address.
0.0.0.132     - host address.
```

The second item, which is required for TCP/IP to work, is the subnet mask. The subnet mask is used by the TCP/IP protocol to determine whether a host is on the local subnet or on a remote network.

In TCP/IP, the parts of the IP address that are used as the network and host addresses are not fixed, so the network and host addresses above cannot be determined unless you have more information. This information is supplied in another 32-bit number called a subnet mask. In this example, the subnet mask is 255.255.255.0. It is not obvious what this number means unless you know that 255 in binary notation equals 11111111; so, the subnet mask is:

```   11111111.11111111.11111111.0000000
```

Lining up the IP address and the subnet mask together, the network and host portions of the address can be separated:

```   11000000.10101000.01111011.10000100 -- IP address (192.168.123.132)
11111111.11111111.11111111.00000000 -- Subnet mask (255.255.255.0)
```

The first 24 bits (the number of ones in the subnet mask) are identified as the network address, with the last 8 bits (the number of remaining zeros in the subnet mask) identified as the host address. This gives you the following:

```   11000000.10101000.01111011.00000000 -- Network address (192.168.123.0)
00000000.00000000.00000000.10000100 -- Host address (000.000.000.132)
```

So now you know, for this example using a 255.255.255.0 subnet mask, that the network ID is 192.168.123.0, and the host address is 0.0.0.132. When a packet arrives on the 192.168.123.0 subnet (from the local subnet or a remote network), and it has a destination address of 192.168.123.132, your computer will receive it from the network and process it.

Almost all decimal subnet masks convert to binary numbers that are all ones on the left and all zeros on the right. Some other common subnet masks are:

```   Decimal                 Binary
255.255.255.192         1111111.11111111.1111111.11000000
255.255.255.224         1111111.11111111.1111111.11100000
```

Internet RFC 1878 (available from https://www.internic.net ) describes the valid subnets and subnet masks that can be used on TCP/IP networks.

### Network classes

Internet addresses are allocated by the InterNIC (https://www.internic.net ), the organization that administers the Internet. These IP addresses are divided into classes. The most common of these are classes A, B, and C. Classes D and E exist, but are not generally used by end users. Each of the address classes has a different default subnet mask. You can identify the class of an IP address by looking at its first octet. Following are the ranges of Class A, B, and C Internet addresses, each with an example address:

• Class A networks use a default subnet mask of 255.0.0.0 and have 0-127 as their first octet. The address 10.52.36.11 is a class A address. Its first octet is 10, which is between 1 and 126, inclusive.
• Class B networks use a default subnet mask of 255.255.0.0 and have 128-191 as their first octet. The address 172.16.52.63 is a class B address. Its first octet is 172, which is between 128 and 191, inclusive.
• Class C networks use a default subnet mask of 255.255.255.0 and have 192-223 as their first octet. The address 192.168.123.132 is a class C address. Its first octet is 192, which is between 192 and 223, inclusive.

In some scenarios, the default subnet mask values do not fit the needs of the organization, because of the physical topology of the network, or because the numbers of networks (or hosts) do not fit within the default subnet mask restrictions. The next section explains how networks can be divided using subnet masks.

### Subnetting

A Class A, B, or C TCP/IP network can be further divided, or subnetted, by a system administrator. This becomes necessary as you reconcile the logical address scheme of the Internet (the abstract world of IP addresses and subnets) with the physical networks in use by the real world.

A system administrator who is allocated a block of IP addresses may be administering networks that are not organized in a way that easily fits these addresses. For example, you have a wide area network with 150 hosts on three networks (in different cities) that are connected by a TCP/IP router. Each of these three networks has 50 hosts. You are allocated the class C network 192.168.123.0. (For illustration, this address is actually from a range that is not allocated on the Internet.) This means that you can use the addresses 192.168.123.1 to 192.168.123.254 for your 150 hosts.

Two addresses that cannot be used in your example are 192.168.123.0 and 192.168.123.255 because binary addresses with a host portion of all ones and all zeros are invalid. The zero address is invalid because it is used to specify a network without specifying a host. The 255 address (in binary notation, a host address of all ones) is used to broadcast a message to every host on a network. Just remember that the first and last address in any network or subnet cannot be assigned to any individual host.

You should now be able to give IP addresses to 254 hosts. This works fine if all 150 computers are on a single network. However, your 150 computers are on three separate physical networks. Instead of requesting more address blocks for each network, you divide your network into subnets that enable you to use one block of addresses on multiple physical networks.

Using a subnet mask of 255.255.255.192, your 192.168.123.0 network then becomes the four networks 192.168.123.0, 192.168.123.64, 192.168.123.128 and 192.168.123.192. These four networks would have as valid host addresses:

```   192.168.123.1-62
192.168.123.65-126
192.168.123.129-190
192.168.123.193-254
```

Remember, again, that binary host addresses with all ones or all zeros are invalid, so you cannot use addresses with the last octet of 0, 63, 64, 127, 128, 191, 192, or 255.

You can see how this works by looking at two host addresses, 192.168.123.71 and 192.168.123.133. If you used the default Class C subnet mask of 255.255.255.0, both addresses are on the 192.168.123.0 network. However, if you use the subnet mask of 255.255.255.192, they are on different networks; 192.168.123.71 is on the 192.168.123.64 network, 192.168.123.133 is on the 192.168.123.128 network.