Site icon Tutorial

Risk Management

Go back to Tutorial

Risk is potential of losing something of value. Values (such as physical health, social status, emotional well being or financial wealth) can be gained or lost when taking risk resulting from a given action, activity and/or inaction, foreseen or unforeseen. Risk can also be defined as the intentional interaction with uncertainty. Uncertainty is a potential, unpredictable, unmeasurable and uncontrollable outcome, risk is a consequence of action taken in spite of uncertainty.

Risks exist because entities, companies and organisations have “assets” of a material or immaterial nature that could be subject to damage that has consequences on the entity in question.

Assets

In very general terms, an asset can be defined as anything that could be of value or

importance to the entity. In information security, the ISO/IEC 27005 standard distinguishes between:

Risks (and their consequences) differ depending on what type of damage occurs. Different categories of assets will be damaged in different ways, and while it is easy to list the ways in which information can be damaged (by being lost, tampered with or exposed, among other things), few standard classifications exist for processes or certain support-related assets.

The type of damage an asset sustains is not clearly specified in the ISO/IEC 27005 standard, which does not distinguish either damage from consequences. In our view however it is important to distinguish between direct consequences of damage to assets, and secondary or indirect consequences affecting processes and the entity’s activities.

Risk management is the identification, assessment, and prioritization of risks (defined in ISO 31000 as the effect of uncertainty on objectives) followed by coordinated and economical application of resources to minimize, monitor, and control the probability and/or impact of unfortunate events or to maximize the realization of opportunities. Risk management’s objective is to assure uncertainty does not deflect the endeavor from the business goals.

For the most part, these methods consist of the following elements, performed, more or less, in the following order.

Process

According to the standard ISO 31000 “Risk management – Principles and guidelines on implementation,” the process of risk management consists of several steps as follows:

Establishing the context – This involves:

Identification – After establishing the context, the next step in the process of managing risk is to identify potential risks. Risks are about events that, when triggered, cause problems or benefits. Hence, risk identification can start with the source of our problems and those of our competitors (benefit), or with the problem itself.

When either source or problem is known, the events that a source may trigger or the events that can lead to a problem can be investigated. For example: stakeholders withdrawing during a project may endanger funding of the project; confidential information may be stolen by employees even within a closed network; lightning striking an aircraft during takeoff may make all people on board immediate casualties.

The chosen method of identifying risks may depend on culture, industry practice and compliance. The identification methods are formed by templates or the development of templates for identifying source, problem or event. Common risk identification methods are:

Threat-based definitions of risk usually involve selecting, from a list of typical threats, standard elements that are relevant to the type of asset in question. For the asset elements of the three examples listed above, there would be (based on just some examples from ISO/IEC 27005)

Assessment

Once risks have been identified, they must then be assessed as to their potential severity of impact (generally a negative impact, such as damage or loss) and to the probability of occurrence. These quantities can be either simple to measure, in the case of the value of a lost building, or impossible to know for sure in the case of the probability of an unlikely event occurring. Therefore, in the assessment process it is critical to make the best educated decisions in order to properly prioritize the implementation of the risk management plan.

Even a short-term positive improvement can have long-term negative impacts. Take the “turnpike” example. A highway is widened to allow more traffic. More traffic capacity leads to greater development in the areas surrounding the improved traffic capacity. Over time, traffic thereby increases to fill available capacity. Turnpikes thereby need to be expanded in a seemingly endless cycles. There are many other engineering examples where expanded capacity (to do any function) is soon filled by increased demand. Since expansion comes at a cost, the resulting growth could become unsustainable without forecasting and management.

The fundamental difficulty in risk assessment is determining the rate of occurrence since statistical information is not available on all kinds of past incidents. Furthermore, evaluating the severity of the consequences (impact) is often quite difficult for intangible assets. Asset valuation is another question that needs to be addressed. Thus, best educated opinions and available statistics are the primary sources of information. Nevertheless, risk assessment should produce such information for the management of the organization that the primary risks are easy to understand and that the risk management decisions may be prioritized. Thus, there have been several theories and attempts to quantify risks. Numerous different risk formulae exist, but perhaps the most widely accepted formula for risk quantification is:

Rate (or probability) of occurrence multiplied by the impact of the event equals risk magnitude.

Since risk assessment and management is essential in security management, both are tightly related. Security assessment methodologies like CRAMM contain risk assessment modules as an important part of the first steps of the methodology. On the other hand, risk assessment methodologies like Mehari evolved to become security assessment methodologies. An ISO standard on risk management (Principles and guidelines on implementation) was published under code ISO 31000 on 13 November 2009.

Quantitative Analysis – There are many formal methods used to “measure” risk.

Often the probability of a negative event is estimated by using the frequency of past similar events. Probabilities for rare failures may be difficult to estimate. This makes risk assessment difficult in hazardous industries, for example nuclear energy, where the frequency of failures is rare, while harmful consequences of failure are severe.

Statistical methods may also require the use of a cost function, which in turn may require the calculation of the cost of loss of a human life. This is a difficult problem. One approach is to ask what people are willing to pay to insure against death or radiological release (e.g. GBq of radio-iodine), but as the answers depend very strongly on the circumstances it is not clear that this approach is effective.

Risk is often measured as the expected value of an undesirable outcome. This combines the probabilities of various possible events and some assessment of the corresponding harm into a single value. See also Expected utility. The simplest case is a binary possibility of Accident or No accident. The associated formula for calculating risk is then:

For example, if performing activity X has a probability of 0.01 of suffering an accident of A, with a loss of 1000, then total risk is a loss of 10, the product of 0.01 and 1000.

Situations are sometimes more complex than the simple binary possibility case. In a situation with several possible accidents, total risk is the sum of the risks for each different accident, provided that the outcomes are comparable:

For example, if performing activity X has a probability of 0.01 of suffering an accident of A, with a loss of 1000, and a probability of 0.000001 of suffering an accident of type B, with a loss of 2,000,000, then total loss expectancy is 12, which is equal to a loss of 10 from an accident of type A and 2 from an accident of type B.

The risk estimation step leads to an evaluation of the impact (I) and the probability (P) of each risk. The only task remaining is to give an overall mark or, simply, to establish a range of risk acceptability. The easily accessible nature of the two basic concepts makes it easy for management to deal with this aspect. A possible decision-making tool could be – A function of Seriousness of a risk S = f(P,I) and an acceptability table as a function of P and I, like the one below for example.

Risk Treatments

Once risks have been identified and assessed, all techniques to manage the risk fall into one or more of these four major categories:

Risk Management Plan

Risk mitigation needs to be approved by the appropriate level of management. For instance, a risk concerning the image of the organization should have top management decision behind it whereas IT management would have the authority to decide on computer virus risks.

The risk management plan should propose applicable and effective security controls for managing the risks. For example, an observed high risk of computer viruses could be mitigated by acquiring and implementing antivirus software. A good risk management plan should contain a schedule for control implementation and responsible persons for those actions.

According to ISO/IEC 27001, the stage immediately after completion of the risk assessment phase consists of preparing a Risk Treatment Plan, which should document the decisions about how each of the identified risks should be handled. Mitigation of risks often means selection of security controls, which should be documented in a Statement of Applicability, which identifies which particular control objectives and controls from the standard have been selected, and why.

Go back to Tutorial

Exit mobile version