Environment

The natural environment encompasses all living and non-living things occurring naturally on Earth or some region thereof. It is an environment that encompasses the interaction of all living species. Climate, weather, and natural resources that affect human survival and economic activity. The concept of the natural environment can be distinguished by components:

  • Complete ecological units that function as natural systems without massive civilized human intervention, including all vegetation, microorganisms, soil, rocks, atmosphere, and natural phenomena that occur within their boundaries
  • Universal natural resources and physical phenomena that lack clear-cut boundaries, such as air, water, and climate, as well as energy, radiation, electric charge, and magnetism, not originating from civilized human activity

Ecosystem

An ecosystem is a community of living organisms in conjunction with the nonliving components of their environment (things like air, water and mineral soil), interacting as a system. These biotic and abiotic components are regarded as linked together through nutrient cycles and energy flows. As ecosystems are defined by the network of interactions among organisms, and between organisms and their environment, they can be of any size but usually encompass specific, limited spaces (although some scientists say that the entire planet is an ecosystem).

Energy, water, nitrogen and soil minerals are other essential abiotic components of an ecosystem. The energy that flows through ecosystems is obtained primarily from the sun. It generally enters the system through photosynthesis, a process that also captures carbon from the atmosphere. By feeding on plants and on one another, animals play an important role in the movement of matter and energy through the system. They also influence the quantity of plant and microbial biomass present. By breaking down dead organic matter, decomposers release carbon back to the atmosphere and facilitate nutrient cycling by converting nutrients stored in dead biomass back to a form that can be readily used by plants and other microbes.

Ecosystems are controlled both by external and internal factors. External factors such as climate, the parent material which forms the soil and topography, control the overall structure of an ecosystem and the way things work within it, but are not themselves influenced by the ecosystem. Other external factors include time and potential biota. Ecosystems are dynamic entities—invariably, they are subject to periodic disturbances and are in the process of recovering from some past disturbance. Ecosystems in similar environments that are located in different parts of the world can have very different characteristics simply because they contain different species. The introduction of non-native species can cause substantial shifts in ecosystem function. Internal factors not only control ecosystem processes but are also controlled by them and are often subject to feedback loops. While the resource inputs are generally controlled by external processes like climate and parent material, the availability of these resources within the ecosystem is controlled by internal factors like decomposition, root competition or shading. Other internal factors include disturbance, succession and the types of species present. Although humans exist and operate within ecosystems, their cumulative effects are large enough to influence external factors like climate.

Biodiversity affects ecosystem function, as do the processes of disturbance and succession. Ecosystems provide a variety of goods and services upon which people depend; the principles of ecosystem management suggest that rather than managing individual species, natural resources should be managed at the level of the ecosystem itself. Classifying ecosystems into ecologically homogeneous units is an important step towards effective ecosystem management, but there is no single, agreed-upon way to do this.

Ecosystem is classified as

  • An aquatic ecosystem is an ecosystem in a body of water. Communities of organisms that are dependent on each other and on their environment live in aquatic ecosystems. The two main types of aquatic ecosystems are marine ecosystems and freshwater ecosystems.
  • A terrestrial ecosystem is an ecosystem found only on landforms. Six primary terrestrial ecosystems exist: tundra, taiga, temperate deciduous forest, tropical rain forest, grassland and desert.

Ecological Pyramid

An ecological pyramid (also trophic pyramid, energy pyramid, or sometimes food pyramid) is a graphical representation designed to show the biomass or bio productivity at each trophic level in a given ecosystem.

Biomass is the amount of living or organic matter present in an organism. Biomass pyramids show how much biomass is present in the organisms at each trophic level, while productivity pyramids show the production or turnover in biomass.

Ecological pyramids begin with producers on the bottom (such as plants) and proceed through the various trophic levels (such as herbivores that eat plants, then carnivores that eat herbivores, then carnivores that eat those carnivores, and so on). The highest level is the top of the food chain.

An ecological pyramid of biomass shows the relationship between biomass and trophic level by quantifying the biomass present at each trophic level of an ecological community at a particular time. It is a graphical representation of biomass (total amount of living or organic matter in an ecosystem) present in unit area in different tropic levels. Typical units are grams per meter2, or calories per meter2. The pyramid of biomass may be “inverted”. For example, in a pond ecosystem, the standing crop of phytoplankton, the major producers, at any given point will be lower than the mass of the heterotrophs, such as fish and insects. This is explained as the phytoplankton reproduce very quickly, but have much shorter individual lives.

One problem with biomass pyramids is that they can make a trophic level appear to contain more energy than it actually does. For example, all birds have beaks and skeletons, which despite having mass are not eaten by the next trophic level.

There is also pyramid of numbers which represent the number of organisms in each trophic level. They may be upright (e.g. Grassland ecosystem), inverted (parasitic ecosystem) or dumbbell shaped (forest ecosystem).

An energy pyramid is a presentation of the trophic levels in an ecosystem. Energy from the sun is transferred through the ecosystem by passing through various trophic levels. Roughly 10% of the energy is transferred from one trophic level to the next, thus preventing a large amounts of trophic levels. There must be higher amounts of biomass at the bottom of the pyramid to support the energy and biomass requirements of the higher trophic levels.

environment

Ten Per Cent Law – The Ten percent law for the transfer of energy from one trophic level to the next was introduced by Raymond Lindeman(1942). According to this law, during the transfer of energy from organic food from one trophic level to the next, only about ten percent of the energy from organic matter is stored as flesh. The remaining is lost during transfer, broken down in respiration, or lost to incomplete digestion by higher trophic levels.

environment-01

Biodiversity and The Food Chain

Biodiversity is the variety of different types of life found on earth. It is a measure of the variety of organisms present in different ecosystems. This can refer to genetic variation, ecosystem variation, or species variation (number of species) within an area, biome, or planet.

A food chain is a linear sequence of links in a food web starting from “producer” species (such as grass or trees) and ending at apex predator species (like grizzly bears or killer whales), detrivores (like earthworms or woodlice), or decomposer species (such as fungi or bacteria). A food chain also shows how the organisms are related with each other by the food they eat. Each level of a food chain represents a different trophic level. A food chain differs from a food web, because the complex network of different animals’ feeding relations is aggregated and the chain only follows a direct, linear pathway of one animal at a time. A common metric used to quantify food web trophic structure is food chain length. In its simplest form, the length of a chain is the number of links between a trophic consumer and the base of the web and the mean chain length of an entire web is the arithmetic average of the lengths of all chains in a food web.

Food chains were first introduced by the African-Arab scientist and philosopher Al-Jahiz in the 9th century and later popularized in a book published in 1927 by Charles Elton, which also introduced the food web concept.

environment-02

Biogeochemical Cycles

A biogeochemical cycle or substance turnoveror cycling of substances is a pathway by which a chemical substance moves through both biotic (biosphere) and abiotic (lithosphere, atmosphere, and hydrosphere) compartments of Earth. A cycle is a series of change which comes back to the starting point and which can be repeated. Water, for example, is always recycled through the water cycle, as shown in the diagram. The water undergoes evaporation, condensation, and precipitation, falling back to Earth. Elements, chemical compounds, and other forms of matter are passed from one organism to another and from one part of the biosphere to another through biogeochemical cycles.

The term “biogeochemical” tells us that biological, geological and chemical factors are all involved. The circulation of chemical nutrients like carbon, oxygen, nitrogen, phosphorus, calcium, and water etc. through the biological and physical world are known as biogeochemical cycles. In effect, the element is recycled, although in some cycles there may be places (called reservoirs) where the element is accumulated or held for a long period of time (such as an ocean or lake for water).

The most well-known and important biogeochemical cycles, for example, include the carbon cycle, the nitrogen cycle, the oxygen cycle, the phosphorus cycle, the sulphur cycle, the water cycle, and the rock cycle. There are many biogeochemical cycles that are currently being studied for the first time as climate change and human impacts are drastically changing the speed, intensity, and balance of these relatively unknown cycles. These newly studied biogeochemical cycles include

  • the mercury cycle, and
  • the human-caused cycle of atrazine, which may affect certain species.

Biogeochemical cycles always involve hot equilibrium states: a balance in the cycling of the element between compartments. However, overall balance may involve compartments distributed on a global scale. As biogeochemical cycles describe the movements of substances on the entire globe, the study of these is inherently multidiciplinary. The carbon cycle may be related to research in ecology and atmospheric sciences.

environment-03
Environmental Studies
Pollution

Get industry recognized certification – Contact us

keyboard_arrow_up