DevOps Unit Testing

In computer programming, unit testing is a method by which individual units of source code are tested to determine if they are fit for use. A unit is the smallest testable part of an application. In procedural programming a unit may be an individual function or procedure. Unit tests are created by programmers or occasionally by white box testers.

Ideally, each test case is independent from the others: substitutes like method stubs, mock objects, fakes and test harnesses can be used to assist testing a module in isolation. Unit tests are typically written and run by software developers to ensure that code meets its design and behaves as intended. Its implementation can vary from being very manual (pencil and paper) to being formalized as part of build automation.

Benefits

The goal of unit testing is to isolate each part of the program and show that the individual parts are correct. A unit test provides a strict, written contract that the piece of code must satisfy. As a result, it affords several benefits. Unit tests find problems early in the development cycle.

Facilitates change –

Unit testing allows the programmer to refactor code at a later date, and make sure the module still works correctly (e.g., in regression testing). The procedure is to write test cases for all functions and methods so that whenever a change causes a fault, it can be quickly identified and fixed.

Readily-available unit tests make it easy for the programmer to check whether a piece of code is still working properly.

In continuous unit testing environments, through the inherent practice of sustained maintenance, unit tests will continue to accurately reflect the intended use of the executable and code in the face of any change. Depending upon established development practices and unit test coverage, up-to-the-second accuracy can be maintained.

Simplifies integration –

Unit testing may reduce uncertainty in the units themselves and can be used in a bottom-up testing style approach. By testing the parts of a program first and then testing the sum of its parts, integration testing becomes much easier.

An elaborate hierarchy of unit tests does not equal integration testing. Integration with peripheral units should be included in integration tests, but not in unit tests. Integration testing typically still relies heavily on humans testing manually; high-level or global-scope testing can be difficult to automate, such that manual testing often appears faster and cheaper.

Documentation –

Unit testing provides a sort of living documentation of the system. Developers looking to learn what functionality is provided by a unit and how to use it can look at the unit tests to gain a basic understanding of the unit’s API.

Unit test cases embody characteristics that are critical to the success of the unit. These characteristics can indicate appropriate/inappropriate use of a unit as well as negative behaviors that are to be trapped by the unit. A unit test case, in and of itself, documents these critical characteristics, although many software development environments do not rely solely upon code to document the product in development.

By contrast, ordinary narrative documentation is more susceptible to drifting from the implementation of the program and will thus become outdated (e.g., design changes, feature creep, relaxed practices in keeping documents up-o-date).

Design –

When software is developed using a test-driven approach, the unit test may take the place of formal design. Each unit test can be seen as a design element specifying classes, methods, and observable behavior. The following Java example will help illustrate this point.

Here is a test class that specifies a number of elements of the implementation. First, that there must be an interface called Adder, and an implementing class with a zero-argument constructor called AdderImpl. It goes on to assert that the Adder interface should have a method called add, with two integer parameters, which returns another integer. It also specifies the behavior of this method for a small range of values.

public class TestAdder {

public void testSum() {

Adder adder = new AdderImpl();

assert(adder.add(1, 1) == 2);

assert(adder.add(1, 2) == 3);

assert(adder.add(2, 2) == 4);

assert(adder.add(0, 0) == 0);

assert(adder.add(-1, -2) == -3);

assert(adder.add(-1, 1) == 0);

assert(adder.add(1234, 988) == 2222);

}

}

In this case the unit test, having been written first, acts as a design document specifying the form and behaviour of a desired solution, but not the implementation details, which are left for the programmer. Following the “do the simplest thing that could possibly work” practice, the easiest solution that will make the test pass is shown below.

interface Adder {

int add(int a, int b);

}

class AdderImpl implements Adder {

int add(int a, int b) {

return a + b;

}

}

Unlike other diagram-based design methods, using a unit-test as a design has one significant advantage. The design document (the unit-test itself) can be used to verify that the implementation adheres to the design. With the unit-test design method, the tests will never pass if the developer does not implement the solution according to the design.

It is true that unit testing lacks some of the accessibility of a diagram, but UML diagrams are now easily generated for most modern languages by free tools (usually available as extensions to IDEs). Free tools, like those based on the xUnit framework, outsource to another system the graphical rendering of a view for human consumption.

Separation of interface from implementation

Because some classes may have references to other classes, testing a class can frequently spill over into testing another class. A common example of this is classes that depend on a database: in order to test the class, the tester often writes code that interacts with the database. This is a mistake, because a unit test should usually not go outside of its own class boundary, and especially should not cross such process/network boundaries because this can introduce unacceptable performance problems to the unit test-suite. Crossing such unit boundaries turns unit tests into integration tests, and when test cases fail, makes it less clear which component is causing the failure.

Instead, the software developer should create an abstract interface around the database queries, and then implement that interface with their own mock object. By abstracting this necessary attachment from the code (temporarily reducing the net effective coupling), the independent unit can be more thoroughly tested than may have been previously achieved. This results in a higher quality unit that is also more maintainable.

Unit testing limitations

Testing cannot be expected to catch every error in the program: it is impossible to evaluate every execution path in all but the most trivial programs. The same is true for unit testing. Additionally, unit testing by definition only tests the functionality of the units themselves. Therefore, it will not catch integration errors or broader system-level errors (such as functions performed across multiple units, or non-functional test areas such as performance). Unit testing should be done in conjunction with other software testing activities. Like all forms of software testing, unit tests can only show the presence of errors; they cannot show the absence of errors.

Software testing is a combinatorial problem. For example, every Boolean decision statement requires at least two tests: one with an outcome of “true” and one with an outcome of “false”. As a result, for every line of code written, programmers often need 3 to 5 lines of test code. This obviously takes time and its investment may not be worth the effort. There are also many problems that cannot easily be tested at all – for example those that are nondeterministic or involve multiple threads. In addition, writing code for a unit test is as likely to be at least as buggy as the code it is testing. Fred Brooks in The Mythical Man-Month quotes: never take two chronometers to sea. Always take one or three. Meaning, if two chronometers contradict, how do you know which one is correct?

To obtain the intended benefits from unit testing, rigorous discipline is needed throughout the software development process. It is essential to keep careful records not only of the tests that have been performed, but also of all changes that have been made to the source code of this or any other unit in the software. Use of a version control system is essential. If a later version of the unit fails a particular test that it had previously passed, the version-control software can provide a list of the source code changes (if any) that have been applied to the unit since that time.

It is also essential to implement a sustainable process for ensuring that test case failures are reviewed daily and addressed immediately. If such a process is not implemented and ingrained into the team’s workflow, the application will evolve out of sync with the unit test suite, increasing false positives and reducing the effectiveness of the test suite.

Unit testing frameworks

Unit testing frameworks are most often third-party products that are not distributed as part of the compiler suite. They help simplify the process of unit testing, having been developed for a wide variety of languages. Some examples of frameworks are XUnit, and PHPUnit.

It is generally possible to perform unit testing without the support of a specific framework by writing client code that exercises the units under test and uses assertions, exception handling, or other control flow mechanisms to signal failure. Unit testing without a framework is valuable in that there is a barrier to entry for the adoption of unit testing; having scant unit tests is hardly better than having none at all, whereas once a framework is in place, adding unit tests becomes relatively easy. In some frameworks many advanced unit test features are missing or must be hand-coded.

DevOps and Unit Testing

Unit tests are coded verifications that validate one specific behavior in a small section of the system. Unit tests focus on code that has no external dependencies: no calls to the database, no web services, etc. Unit tests are blisteringly fast because of this narrow focus and lack of dependencies on external systems/services.

Unit tests focus on ensuring all paths through code are properly validated. Think of a payroll algorithm responsible for computing wages for hourly workers. The algorithm would take in number of hours worked and the hourly rate, and would return the wages for the period. Such an algorithm would need to handle a number of different situations such as:

  • Standard time (0-40 hours)
  • Overtime (greater than 40 hours to whatever the company’s max hours per period)
  • Error handling (negative hours, negative wages, over max hours)

Such cases can be easily validated via unit tests using widely adopted tools such as NUnit, JUnit, RSpec, etc.

Unit tests are generally written by developers. The test cases are best based on interaction with testers and potentially the business analyst, often during Three Amigos conversations.

DevOps is about making the delivery of software more efficient. This reduces costs, which increases margins. Unit testing also shortens the lead time for fixing bugs and adding new features. It enables software to be softer, or more changeable, by reducing the risk of change. Because of its focus on quality and automation, unit testing fits right in near the core of DevOps.

Share this post
[social_warfare]
Implementing DevOps Testing
Integration Testing

Get industry recognized certification – Contact us

keyboard_arrow_up