Site icon Tutorial

Corrosion

The process of basic corrosion is part chemical and part electrical. It requires a combination of moisture and oxygen. Once those two elements – both of which are a constant presence throughout any building’s life cycle – come together, and in contact with steel, a multi-stage process begins, as

As long as there is no barrier between the iron and the water/oxygen molecules – and as long as the electrochemical reaction is allowed (via poor design, materials selection and/or neglect) to take place, the steel will continue to react until all that is left is a pile of brown rust and the rest of the building rubble all around it.

Bimetallic Corrosion

A second type of corrosion that affects steel members is called bimetallic corrosion. This type of erosion occurs when a chemical reaction is caused by two metals coming in contact – or close contact – with one another. This type of corrosion is more common in metal alloys and is quite complex as there are multiple variations, but it is partly dependent upon any two metals’ respective positions in the galvanic series.

Bimetallic corrosion occurs most frequently in steel structures that are submerged or buried, but working with a reputable metal building supplier will ensure you building is designed with respect to any potential bimetallic corrosion, using proper precautions where necessary.

Environmental Corrosion

Certain environmental pollutants, toxins and compounds can exacerbate either one of the above forms of corrosion, which is why your building’s location plays a key roles in the types of materials and protective coatings that are used. Buildings most susceptible to environmental corrosion are those in an industrial or manufacturing areas where off-gassing and toxic emissions are higher than normal, as well as buildings located in coastal environments, exposed to higher levels of salinity.

Thus, the typical causes of corrosion on structural steel members include:

Corrosion Effects

The consequences of corrosion are many and varied and the effects of these on the safe, reliable and efficient operation of equipment or structures are often more serious than the simple loss of a mass of metal. Failures of various kinds and the need for expensive replacements may occur even though the amount of metal destroyed is quite small. Some of the major harmful effects of corrosion can be summarised as

Corrosion Prevention

By retarding either the anodic or cathodic reactions the rate of corrosion can be reduced. This can be achieved as

Conditioning the Metal – This can be sub-divided into two main groups

Conditioning the Corrosive Environment – Corrosion Inhibitors – A corrosion inhibitor is a chemical additive, which, when added to a corrosive aqueous environment, reduces the rate of metal wastage.

Electrochemical Control – Since corrosion is an electrochemical process its progress may be studied by measuring the changes which occur in metal potential with time or with applied electrical currents.

Exit mobile version