

Certified Automation Functional

Testing Sample Material

VS-1253

Certified Automation Functional Testing Professional

www.vskills.in Page 2

1. SOFTWARE TESTING

Testing can never completely identify all the defects within software. Instead, it furnishes a criticism

or comparison that compares the state and behavior of the product against oracles—principles or

mechanisms by which someone might recognize a problem. These oracles may include (but are

not limited to) specifications, contracts, comparable products, past versions of the same product,

inferences about intended or expected purpose, user or customer expectations, relevant standards,

applicable laws, or other criteria.

Every software product has a target audience. For example, the audience for video game software

is completely different from banking software. Therefore, when an organization develops or

otherwise invests in a software product, it can assess whether the software product will be

acceptable to its end users, its target audience, its purchasers, and other stakeholders. Software

testing is the process of attempting to make this assessment.

1.1. What is Software Testing

Software testing is an investigation conducted to provide stakeholders with information about the

quality of the product or service under test Software testing also provides an objective, independent

view of the software to allow the business to appreciate and understand the risks of software

implementation. Test techniques include, but are not limited to, the process of executing a

program or application with the intent of finding software bugs.

Software testing can also be stated as the process of validating and verifying that a software

program/application/product:

� meets the business and technical requirements that guided its design and development;

� works as expected; and

� can be implemented with the same characteristics.

Software testing, depending on the testing method employed, can be implemented at any time in

the development process. However, most of the test effort occurs after the requirements have been

defined and the coding process has been completed. As such, the methodology of the test is

governed by the software development methodology adopted.

Different software development models will focus the test effort at different points in the

development process. Newer development models, such as Agile, often employ test driven

development and place an increased portion of the testing in the hands of the developer, before it

reaches a formal team of testers. In a more traditional model, most of the test execution occurs

after the requirements have been defined and the coding process has been completed

1.2. Software Testing History

The separation of debugging from testing was initially introduced by Glenford J. Myers in 1979.

Although his attention was on breakage testing ("a successful test is one that finds a bug") it

illustrated the desire of the software engineering community to separate fundamental development

activities, such as debugging, from that of verification. Dave Gelperin and William C. Hetzel

classified in 1988 the phases and goals in software testing in the following stages:

Certified Automation Functional Testing Professional

www.vskills.in Page 3

� Until 1956 - Debugging oriented

� 1957–1978 - Demonstration oriented

� 1979–1982 - Destruction oriented

� 1983–1987 - Evaluation oriented

� 1988–2000 - Prevention oriented

1.3. Software Testing Scope

A primary purpose of testing is to detect software failures so that defects may be discovered and

corrected. This is a non-trivial pursuit. Testing cannot establish that a product functions properly

under all conditions but can only establish that it does not function properly under specific

conditions. The scope of software testing often includes examination of code as well as execution

of that code in various environments and conditions as well as examining the aspects of code: does

it do what it is supposed to do and do what it needs to do. In the current culture of software

development, a testing organization may be separate from the development team. There are

various roles for testing team members. Information derived from software testing may be used to

correct the process by which software is developed.

1.4. Functional vs. Non-Functional testing

Functional testing refers to activities that verify a specific action or function of the code. These are

usually found in the code requirements documentation, although some development

methodologies work from use cases or user stories. Functional tests tend to answer the question of

"can the user do this" or "does this particular feature work".

Non-functional testing refers to aspects of the software that may not be related to a specific

function or user action, such as scalability or security. Non-functional testing tends to answer such

questions as "how many people can log in at once".

1.5. Defects and failures

Not all software defects are caused by coding errors. One common source of expensive defects is

caused by requirement gaps, e.g., unrecognized requirements, which result in errors of omission by

the program designer. A common source of requirements gaps is non-functional requirements

such as testability, scalability, maintainability, usability, performance, and security.

Software faults occur through the following processes. A programmer makes an error (mistake),

which results in a defect (fault, bug) in the software source code. If this defect is executed, in

certain situations the system will produce wrong results, causing a failure. Not all defects will

necessarily result in failures. For example, defects in dead code will never result in failures. A

defect can turn into a failure when the environment is changed. Examples of these changes in

environment include the software being run on a new hardware platform, alterations in source data

or interacting with different software. A single defect may result in a wide range of failure

symptoms.

Certified Automation Functional Testing Professional

www.vskills.in Page 4

1.6. Finding faults early

It is commonly believed that the earlier a defect is found the cheaper it is to fix it. The following

table shows the cost of fixing the defect depending on the stage it was found. For example, if a

problem in the requirements is found only post-release, then it would cost 10–100 times more to

fix than if it had already been found by the requirements review.

Cost to fix a defect Time detected

Requirements Architecture Construction System

test

Post-

release

Time

introduced

Requirements 1× 3× 5-10× 10× 10-100×

Architecture - 1× 10× 15× 25-100×

Construction - - 1× 10× 10-25×

