

Certified Git Version Control
Professional

Sample Material

Certified Git Version Control Professional

www.vskills.in Page 4

1.1.1.1. IIIINTRODUCTIONNTRODUCTIONNTRODUCTIONNTRODUCTION

1.1.1.1.1.1.1.1. Version ControlVersion ControlVersion ControlVersion Control

What is version control, and why should you care? Version control is a system that records
changes to a file or set of files over time so that you can recall specific versions later. Even though
the examples in this book show software source code as the files under version control, in reality
any type of file on a computer can be placed under version control.

If you are a graphic or web designer and want to keep every version of an image or layout (which
you certainly would), it is very wise to use a Version Control System (VCS). A VCS allows you to:
revert files back to a previous state, revert the entire project back to a previous state, review
changes made over time, see who last modified something that might be causing a problem, who
introduced an issue and when, and more. Using a VCS also means that if you screw things up or
lose files, you can generally recover easily. In addition, you get all this for very little overhead.

Local Version Control SyLocal Version Control SyLocal Version Control SyLocal Version Control Systemsstemsstemsstems

Many people’s version-control method of choice is to copy files into another directory (perhaps a
time-stamped directory, if they’re clever). This approach is very common because it is so simple,
but it is also incredibly error prone. It is easy to forget which directory you’re in and accidentally
write to the wrong file or copy over files you don’t mean to.

To deal with this issue, programmers long ago developed local VCSs that had a simple database
that kept all the changes to files under revision control (see Figure 1-1).

Figure 1-1. Local version control diagram

One of the more popular VCS tools was a system called rcs, which is still distributed with many
computers today. Even the popular Mac OS X operating system includes the rcs command when
you install the Developer Tools. This tool basically works by keeping patch sets (that is, the
differences between files) from one revision to another in a special format on disk; it can then
recreate what any file looked like at any point in time by adding up all the patches.

Certified Git Version Control Professional

www.vskills.in Page 5

Centralized Version Control SystemsCentralized Version Control SystemsCentralized Version Control SystemsCentralized Version Control Systems

The next major issue that people encounter is that they need to collaborate with developers on
other systems. To deal with this problem, Centralized Version Control Systems (CVCSs) were
developed. These systems, such as CVS, Subversion, and Perforce, have a single server that
contains all the versioned files, and a number of clients that check out files from that central place.
For many years, this has been the standard for version control (see Figure 1-2).

Figure 1-2. Centralized version control diagram

This setup offers many advantages, especially over local VCSs. For example, everyone knows to a
certain degree what everyone else on the project is doing. Administrators have fine-grained control
over who can do what; and it’s far easier to administer a CVCS than it is to deal with local
databases on every client.

However, this setup also has some serious downsides. The most obvious is the single point of
failure that the centralized server represents. If that server goes down for an hour, then during that
hour nobody can collaborate at all or save versioned changes to anything they’re working on. If the
hard disk the central database is on becomes corrupted, and proper backups haven’t been kept,
you lose absolutely everything—the entire history of the project except whatever single snapshots
people happen to have on their local machines. Local VCS systems suffer from this same
problem—whenever you have the entire history of the project in a single place, you risk losing
everything.

Distributed Version Control SystemsDistributed Version Control SystemsDistributed Version Control SystemsDistributed Version Control Systems

This is where Distributed Version Control Systems (DVCSs) step in. In a DVCS (such as Git,
Mercurial, Bazaar or Darcs), clients don’t just check out the latest snapshot of the files: they fully
mirror the repository. Thus if any server dies, and these systems were collaborating via it, any of
the client repositories can be copied back up to the server to restore it. Every checkout is really a
full backup of all the data (see Figure 1-3).

Certified Git Version Control Professional

www.vskills.in Page 6

Figure 1-3. Distributed version control diagram

Furthermore, many of these systems deal pretty well with having several remote repositories they
can work with, so you can collaborate with different groups of people in different ways
simultaneously within the same project. This allows you to set up several types of workflows that
aren’t possible in centralized systems, such as hierarchical models.

1.2.1.2.1.2.1.2. History of GitHistory of GitHistory of GitHistory of Git

As with many great things in life, Git began with a bit of creative destruction and fiery controversy.
The Linux kernel is an open source software project of fairly large scope. For most of the lifetime
of the Linux kernel maintenance (1991–2002), changes to the software were passed around as
patches and archived files. In 2002, the Linux kernel project began using a proprietary DVCS
system called BitKeeper.

In 2005, the relationship between the community that developed the Linux kernel and the
commercial company that developed BitKeeper broke down, and the tool’s free-of-charge status
was revoked. This prompted the Linux development community (and in particular Linus
Torvalds, the creator of Linux) to develop their own tool based on some of the lessons they
learned while using Bit Keeper. Some of the goals of the new system were as follows:

� Speed
� Simple design
� Strong support for non-linear development (thousands of parallel branches)
� Fully distributed
� Able to handle large projects like the Linux kernel efficiently (speed and data size)

Certified Git Version Control Professional

www.vskills.in Page 7

Since its birth in 2005, Git has evolved and matured to be easy to use and yet retain these initial
qualities. It’s incredibly fast, it’s very efficient with large projects, and it has an incredible branching
system for non-linear development.

1.3.1.3.1.3.1.3. Git BasicsGit BasicsGit BasicsGit Basics

So, what is Git in a nutshell? This is an important section to absorb, because if you understand
what Git is and the fundamentals of how it works, then using Git effectively will probably be much
easier for you. As you learn Git, try to clear your mind of the things you may know about other
VCSs, such as Subversion and Perforce; doing so will help you avoid subtle confusion when using
the tool. Git stores and thinks about information much differently than these other systems, even
though the user interface is fairly similar; understanding those differences will help prevent you
from becoming confused while using it.

Snapshots, Not DifferencesSnapshots, Not DifferencesSnapshots, Not DifferencesSnapshots, Not Differences

The major difference between Git and any other VCS (Subversion and friends included) is the way
Git thinks about its data. Conceptually, most other systems store information as a list of file-based
changes. These systems (CVS, Subversion, Perforce, Bazaar, and so on) think of the information
they keep as a set of files and the changes made to each file over time, as illustrated in Figure 1-4.

Figure 1-4. Other systems tend to store data as changes to a base version of each file.

Git doesn’t think of or store its data this way. Instead, Git thinks of its data more like a set of
snapshots of a mini filesystem. Every time you commit, or save the state of your project in Git, it
basically takes a picture of what all your files look like at that moment and stores a reference to that
snapshot. To be efficient, if files have not changed, Git doesn’t store the file again—just a link to the
previous identical file it has already stored. Git thinks about its data more like Figure 1-5.

Figure 1-5. Git stores data as snapshots of the project over time.

Certified Git Version Control Professional

www.vskills.in Page 8

This is an important distinction between Git and nearly all other VCSs. It makes Git reconsider
almost every aspect of version control that most other systems copied from the previous
generation. This makes Git more like a mini filesystem with some incredibly powerful tools built
on top of it, rather than simply a VCS.

Nearly Every Operation Is LocalNearly Every Operation Is LocalNearly Every Operation Is LocalNearly Every Operation Is Local

Most operations in Git only need local files and resources to operate — generally no information is
needed from another computer on your network. If you’re used to a CVCS where most operations
have that network latency overhead, this aspect of Git will make you think that the gods of speed
have blessed Git with unworldly powers. Because you have the entire history of the project right
there on your local disk, most operations seem almost instantaneous.

For example, to browse the history of the project, Git doesn’t need to go out to the server to get
the history and display it for you—it simply reads it directly from your local database. This means
you see the project history almost instantly. If you want to see the changes introduced between the
current version of a file and the file a month ago, Git can look up the file a month ago and do a
local difference calculation, instead of having to either ask a remote server to do it or pull an older
version of the file from the remote server to do it locally.

This also means that there is very little you can’t do if you’re offline or off VPN. If you get on an
airplane or a train and want to do a little work, you can commit happily until you get to a network
connection to upload. If you go home and can’t get your VPN client working properly, you can
still work. In many other systems, doing so is either impossible or painful. In Perforce, for
example, you can’t do much when you aren’t connected to the server; and in Subversion and CVS,
you can edit files, but you can’t commit changes to your database (because your database is
offline). This may not seem like a huge deal, but you may be surprised what a big difference it can
make.

Git Has IntegrityGit Has IntegrityGit Has IntegrityGit Has Integrity

Everything in Git is check-summed before it is stored and is then referred to by that checksum.
This means it’s impossible to change the contents of any file or directory without Git knowing
about it. This functionality is built into Git at the lowest levels and is integral to its philosophy. You
can’t lose information in transit or get file corruption without Git being able to detect it.

The mechanism that Git uses for this checksumming is called a SHA-1 hash. This is a 40-character
string composed of hexadecimal characters (0–9 and a–f) and calculated based on the contents of a
file or directory structure in Git. A SHA-1 hash looks something like this:

24b9da6552252987aa493b52f8696cd6d3b00373

You will see these hash values all over the place in Git because it uses them so much. In fact, Git
stores everything not by file name but in the Git database addressable by the hash value of its
contents.

Certified Git Version Control Professional

www.vskills.in Page 9

Git Generally Only Adds DataGit Generally Only Adds DataGit Generally Only Adds DataGit Generally Only Adds Data

When you do actions in Git, nearly all of them only add data to the Git database. It is very difficult
to get the system to do anything that is not undoable or to make it erase data in any way. As in any
VCS, you can lose or mess up changes you haven’t committed yet; but after you commit a
snapshot into Git, it is very difficult to lose, especially if you regularly push your database to
another repository.

This makes using Git a joy because we know we can experiment without the danger of severely
screwing things up. For a more in-depth look at how Git stores its data and how you can recover
data that seems lost,

The Three StatesThe Three StatesThe Three StatesThe Three States

Now, pay attention. This is the main thing to remember about Git if you want the rest of your
learning process to go smoothly. Git has three main states that your files can reside in: committed,
modified, and staged. Committed means that the data is safely stored in your local database
Modified means that you have changed the file but have not committed it to your database yet
Staged means that you have marked a modified file in its current version to go into your next
commit snapshot.

This leads us to the three main sections of a Git project: the Git directory, the working directory,
and the staging area.

Figure 1-6. Working directory, staging area, and git directory

The Git directory is where Git stores the metadata and object database for your project. This is the
most important part of Git, and it is what is copied when you clone a repository from another
computer.

The working directory is a single checkout of one version of the project. These files are pulled out
of the compressed database in the Git directory and placed on disk for you to use or modify.

Certified Git Version Control Professional

www.vskills.in Page 10

The staging area is a simple file, generally contained in your Git directory, that stores information
about what will go into your next commit. It’s sometimes referred to as the index, but it’s becoming
standard to refer to it as the staging area.

The basic Git workflow goes something like this:
� You modify files in your working directory.
� You stage the files, adding snapshots of them to your staging area.
� You do a commit, which takes the files as they are in the staging area and stores that snapshot

permanently to your Git directory.

If a particular version of a file is in the git directory, it’s considered committed. If it’s modified but
has been added to the staging area, it is staged. And if it was changed since it was checked out but
has not been staged, it is modified. In Chapter 2, you’ll learn more about these states and how you
can either take advantage of them or skip the staged part entirely.

1.4.1.4.1.4.1.4. Installing GitInstalling GitInstalling GitInstalling Git

Installing GitInstalling GitInstalling GitInstalling Git

Let’s get into using some Git. First things first—you have to install it. You can get it a number of
ways; the two major ones are to install it from source or to install an existing package for your
platform.
Installing from SourceInstalling from SourceInstalling from SourceInstalling from Source: : : : If you can, it’s generally useful to install Git from source, because you’ll get
the most recent version Each version of Git tends to include useful UI enhancements, so getting
the latest version is often the best route if you feel comfortable compiling software from source. It
is also the case that many Linux distributions contain very old packages; so unless you’re on a very
up-to-date distro or are using backports, installing from source may be the best bet.

To install Git, you need to have the following libraries that Git depends on: curl, zlib, openssl,
expat, and libiconv. For example, if you’re on a system that has yum (such as Fedora) or apt-get
(such as a Debian based system), you can use one of these commands to install all of the
dependencies:

$ yum install curl-devel expat-devel gettext-devel \
 openssl-devel zlib-devel

$ apt-get install libcurl4-gnutls-dev libexpat1-dev gettext \
 libz-dev libssl-dev

When you have all the necessary dependencies, you can go ahead and grab the latest snapshot
from the Git web site:

http://git-scm.com/download

Then, compile and install:

$ tar -zxf git-1.7.2.2.tar.gz
$ cd git-1.7.2.2
$ make prefix=/usr/local all
$ sudo make prefix=/usr/local install

Certified Git Version Control Professional

www.vskills.in Page 11

After this is done, you can also get Git via Git itself for updates:

$ git clone git://git.kernel.org/pub/scm/git/git.git

Installing on LinuxInstalling on LinuxInstalling on LinuxInstalling on Linux
If you want to install Git on Linux via a binary installer, you can generally do so through the basic
package-management tool that comes with your distribution. If you’re on Fedora, you can use
yum:

$ yum install git-core

Or if you’re on a Debian-based distribution like Ubuntu, try apt-get:

$ apt-get install git

Installing on MacInstalling on MacInstalling on MacInstalling on Mac
There are two easy ways to install Git on a Mac. The easiest is to use the graphical Git installer,
which you can download from the Google Code page (see Figure 1-7):

http://code.google.com/p/git-osx-installer

Figure 1-7. Git OS X installer

The other major way is to install Git via MacPorts (http://www.macports.org). If you have MacPorts
installed, install Git via

$ sudo port install git-core +svn +doc +bash_completion +gitweb

You don’t have to add all the extras, but you’ll probably want to include +svn in case you ever have
to use Git with Subversion repositories.

Installing on WindowsInstalling on WindowsInstalling on WindowsInstalling on Windows: : : : Installing Git on Windows is very easy. The msysGit project has one of the
easier installation procedures. Simply download the installer exe file from the GitHub page, and
run it:

Certified Git Version Control Professional

www.vskills.in Page 12

http://msysgit.github.com/

After it’s installed, you have both a command-line version (including an SSH client that will come
in handy later) and the standard GUI.

Note on Windows usage: you should use Git with the provided msysGit shell (Unix style), it allows
to use the complex lines of command given in this book. If you need, for some reason, to use the
native Windows shell / command line console, you have to use double quotes instead of simple
quotes (for parameters with spaces in them) and you must quote the parameters ending with the
circumflex accent (^) if they are last on the line, as it is a continuation symbol in Windows.

1.5.1.5.1.5.1.5. FirsFirsFirsFirstttt----Time Git SetupTime Git SetupTime Git SetupTime Git Setup

Now that you have Git on your system, you’ll want to do a few things to customize your Git
environment. You should have to do these things only once; they’ll stick around between
upgrades. You can also change them at any time by running through the commands again.

Git comes with a tool called git config that lets you get and set configuration variables that control
all aspects of how Git looks and operates. These variables can be stored in three different places:

� /etc/gitconfig file: Contains values for every user on the system and all their repositories. If you

pass the option--system to git config, it reads and writes from this file specifically.
� ~/.gitconfig file: Specific to your user. You can make Git read and write to this file specifically

by passing the --global option.
� config file in the git directory (that is, .git/config) of whatever repository you’re currently using:

Specific to that single repository. Each level overrides values in the previous level, so values
in.git/config trump those in /etc/gitconfig.

On Windows systems, Git looks for the .gitconfig file in the $HOME directory
(%USERPROFILE% in Windows’ environment), which is C:\Documents and Settings\$USER or
C:\Users\$USER for most people, depending on version ($USER is %USERNAME% in
Windows’ environment). It also still looks for /etc/gitconfig, although it’s relative to the MSys root,
which is wherever you decide to install Git on your Windows system when you run the installer.

Your IdentityYour IdentityYour IdentityYour Identity: : : : The first thing you should do when you install Git is to set your user name and e-
mail address. This is important because every Git commit uses this information, and it’s immutably
baked into the commits you pass around:

$ git config --global user.name "John Doe"
$ git config --global user.email johndoe@example.com

Again, you need to do this only once if you pass the --global option, because then Git will always
use that information for anything you do on that system. If you want to override this with a
different name or e-mail address for specific projects, you can run the command without the --
global option when you’re in that project.

Certified Git Version Control Professional

www.vskills.in Page 13

Your EditorYour EditorYour EditorYour Editor: : : : Now that your identity is set up, you can configure the default text editor that will be
used when Git needs you to type in a message. By default, Git uses your system’s default editor,
which is generally Vi or Vim. If you want to use a different text editor, such as Emacs, you can do
the following:

$ git config --global core.editor emacs

Your Diff ToolYour Diff ToolYour Diff ToolYour Diff Tool: : : : Another useful option you may want to configure is the default diff tool to use to
resolve merge conflicts. Say you want to use vimdiff:

$ git config --global merge.tool vimdiff

Git accepts kdiff3, tkdiff, meld, xxdiff, emerge, vimdiff, gvimdiff, ecmerge, and opendiff as valid
merge tools. You can also set up a custom tool; see Chapter 7 for more information about doing
that.

Checking Your SettingsChecking Your SettingsChecking Your SettingsChecking Your Settings: : : : If you want to check your settings, you can use the git config --list
command to list all the settings Git can find at that point:

$ git config --list
user.name=Scott Chacon
user.email=schacon@gmail.com
color.status=auto
color.branch=auto
color.interactive=auto
color.diff=auto
...

You may see keys more than once, because Git reads the same key from different files
(/etc/gitconfigand ~/.gitconfig, for example). In this case, Git uses the last value for each unique key
it sees.

You can also check what Git thinks a specific key’s value is by typing git config {key}:

$ git config user.name
Scott Chacon

