
Certified Cordova Mobile Application Developer

Certified Cordova Mobile

Application Developer

VS-1124

Certified Cordova Mobile Application Developer

1.1.1.1. OVERVIEWOVERVIEWOVERVIEWOVERVIEW

Apache Cordova is an open-source mobile development framework. It allows you to use standard

web technologies such as HTML5, CSS3, and JavaScript for cross-platform development, avoiding

each mobile platforms' native development language. Applications execute within wrappers

targeted to each platform, and rely on standards-compliant API bindings to access each device's

sensors, data, and network status.

Apache Cordova graduated in October 2012 as a top level project within the Apache Software

Foundation (ASF). Through the ASF, future Cordova development will ensure open stewardship

of the project. It will always remain free and open source under the Apache License, Version 2.0.

Visit cordova.apache.org for more information.

Use Apache Cordova if you are:

� A mobile developer and want to extend an application across more than one platform, without

having to re-implement it with each platform's language and tool set.

� A web developer and want to deploy a web app that's packaged for distribution in various app

store portals.

� A mobile developer interested in mixing native application components with a WebView

(special browser window) that can access device-level APIs, or if you want to develop a plugin

interface between native and WebView components.

1.1.1.1.1.1.1.1. Basic ComponentsBasic ComponentsBasic ComponentsBasic Components

Apache Cordova applications rely on a common config.xml file that provides information about

the app and specifies parameters affecting how it works, such as whether it responds to orientation

shifts. This file adheres to the W3C's Packaged Web App, or widget, specification.

The application itself is implemented as a web page, by default a local file named index.html, that

references whatever CSS, JavaScript, images, media files, or other resources are necessary for it to

run. The app executes as a WebView within the native application wrapper, which you distribute

to app stores.

The Cordova-enabled WebView may provide the application with its entire user interface. On

some platforms, it can also be a component within a larger, hybrid application that mixes the

WebView with native application components.

A plugin interface is available for Cordova and native components to communicate with each

other. This enables you to invoke native code from JavaScript. Ideally, the JavaScript APIs to that

native code are consistent across multiple device platforms. As of version 3.0, plugins provide

bindings to standard device APIs. Third-party plugins provide additional bindings to features not

necessarily available on all platforms. You can find these third-party plugins in the plugin registry

and use them in your application. You can also develop your own plugins, as described in the

Plugin Development Guide. Plugins may be necessary, for example, to communicate between

Cordova and custom native components.

Certified Cordova Mobile Application Developer

www.vskills.in Page 2

As of version 3.0, when you create a Cordova project it does not have any plugins present. This is

the new default behavior. Any plugins you desire, even the core plugins, must be explicitly added.

Cordova does not provide any UI widgets or MV frameworks. Cordova provides only the runtime

in which those can execute. If you wish to use UI widgets and/or an MV framework, you will need

to select those and include them in your application yourself as third-party material.

1.2.1.2.1.2.1.2. Development PathsDevelopment PathsDevelopment PathsDevelopment Paths

As of version 3.0, you can use two basic workflows to create a mobile app. While you can often

use either workflow to accomplish the same task, they each offer advantages:

CrossCrossCrossCross----platform (CLI) workflow platform (CLI) workflow platform (CLI) workflow platform (CLI) workflow

Use this workflow if you want your app to run on as many different mobile operating systems as

possible, with little need for platform-specific development. This workflow centers around the

cordova utility, otherwise known as the Cordova CLI, that was introduced with Cordova 3.0. The

CLI is a high-level tool that allows you to build projects for many platforms at once, abstracting

away much of the functionality of lower-level shell scripts. The CLI copies a common set of web

assets into subdirectories for each mobile platform, makes any necessary configuration changes for

each, runs build scripts to generate application binaries. The CLI also provides a common

interface to apply plugins to your app. Unless you have a need for the platform-centered workflow,

the cross-platform workflow is recommended.

PlatformPlatformPlatformPlatform----centered wocentered wocentered wocentered workflowrkflowrkflowrkflow

Use this workflow if you want to focus on building an app for a single platform and need to be able

to modify it at a lower level. You need to use this approach, for example, if you want your app to

mix custom native components with web-based Cordova components, as discussed in Embedding

WebViews. As a rule of thumb, use this workflow if you need to modify the project within the

SDK. This workflow relies on a set of lower-level shell scripts that are tailored for each supported

platform, and a separate Plugman utility that allows you to apply plugins. While you can use this

workflow to build cross-platform apps, it is generally more difficult because the lack of a higher-

level tool means separate build cycles and plugin modifications for each platform. Still, this

workflow allows you greater access to development options provided by each SDK, and is essential

for complex hybrid apps.

When first starting out, it may be easiest to use the cross-platform workflow to create an app, as

described in The Command-line Interface. You then have the option to switch to a platform-

centered workflow if you need the greater control the SDK provides. Lower-level shell utilities are

available at cordova.apache.org in a separate distribution than the CLI. For projects initially

generated by the CLI, these shell tools are also available in the project's various

platforms/*/cordova directories.

Once you switch from the CLI-based workflow to one centered around the platform-specific SDKs

and shell tools, you can't go back. The CLI maintains a common set of cross-platform source code,

which on each build it uses to write over platform-specific source code. To preserve any

modifications you make to the platform-specific assets, you need to switch to the platform-centered

Certified Cordova Mobile Application Developer

www.vskills.in Page 3

shell tools, which ignore the cross-platform source code, and instead relies on the platform-specific

source code.

1.3.1.3.1.3.1.3. Installing CordovaInstalling CordovaInstalling CordovaInstalling Cordova

The installation of Cordova will differ depending on the workflow above you choose:

� Cross-platform workflow: see The Command-Line Interface.

� Platform-centered workflow: see the Platform Guides.

After installing Cordova, it is recommended that you review the Platform Guides for the mobile

platforms that you will be developing for. It is also recommended that you also review the Privacy

Guide, Security Guide, and Next Steps. For accessing native function on a device from JavaScript,

refer to the Plugin APIs. And refer to the other included guides as necessary.

The following shows the set of development tools and device APIs available for each mobile

platform. The device APIs listed here are provided by the core plugins, additional APIs are

available via third-party plugins. Column headers display the CLI's shorthand names.

1.4.1.4.1.4.1.4. Platform SupportPlatform SupportPlatform SupportPlatform Support

Apache Cordova currently supports the following platforms

� Android (Google)—http://developer.android.com/index.html

� b ada (Samsung)—http://developer.bada.com

� BlackBerry 10 (BlackBerry) —https://developer.blackberry.com/

� iOS (Apple) —https://developer.apple.com/devcenter/ios/index.action

� Firefox OS—https://developer.mozilla.org/en - US/docs/Mozilla/Firefox_OS

� Tizen (originally Samsung, now the Linux Foundation)—https://developer.tizen.org

� Windows Phone 7 and Windows Phone 8 (Microsoft) —

http://developer.windowsphone.com/en- us

� Windows 8 (Microsoft)—http://msdn.microsoft.com

Details are listed below

Certified Cordova Mobile Application Developer

www.vskills.in Page 4

1.5.1.5.1.5.1.5. Cordova Applications Cordova Applications Cordova Applications Cordova Applications

Cordova applications are web applications running inside of a client- side native application

container. Therefore, web applications running within a Cordova application leverage an HTML5

application structure rather than that of a traditional s erver- based web application.

Mobile devices need a slightly different approach. Web 1.0 and 2.0 technologies work great on

smartphones, but Web 1.0 apps caused a lot of data to be transmitted between server and device,

and Web 2.0 apps were cooler but still required constant network connectivity to operate.

With HTML5, web applications can make use of new capabilities that allow an application to

operate more efficiently on a mobile device (or devices with limited connectivity), and they can use

a client-side database to store application data. This functionality makes it easier for mobile

devices to operate as they go in and out of wireless coverage. Additionally, HTML5 supports the

addition of a manifest file that lists all of the files that comprise the web application. When the

web application’s index file loads, the browser reads the manifest file, retrieves all of the files listed

in the manifest, and downloads them to the client device. If a mobile device were to lose network

Certified Cordova Mobile Application Developer

www.vskills.in Page 5

connectivity, then as long as the files listed in the manifest were available on - device, the

application could continue working—using any data that might be stored locally.

When a Cordova application launches, it loads the web application’s startup page (typically

index.html) and associated content (CSS files, JavaScript files) before passing control to the web

app. In order for this method to work, the resources the app needs to start have to be located

within the container.

Some Cordova developers load as little as possible within the container and, immediately after

startup, run off to a server to get the “real” content for the application; I see their questions on the

support forums all the time. This approach works, but it’s not the best experience for users and

may cause you problems with app store submissions —some smartphone platforms (Apple iOS, for

example) don’t like it when your app doesn’t contain content and is merely a shell for a web

application being hosted by a web server

IDEIDEIDEIDE

Various IDEs are available for coding. Adobe, offers a free, open source code editor called

Brackets (http://brackets.io) and it provides a nice, clean interface for coding your web

applications. The open source Aptana studio (www.aptana.com) is another option, it’s an open

source Eclipse - based IDE tailored for web development. It’s lighter - weight than Eclipse.

Packaging and DeploymentPackaging and DeploymentPackaging and DeploymentPackaging and Deployment

Web application, whether it uses any of the Cordova APIs or not, it has to be packaged into a

native application that will run on - device. Platforms supported by the Cordova project have

proprietary tools for packaging or building native applications. To build a Cordova application for

each supported mobile platform, the application’s web content (the HTML, CSS, JavaScript, and

other files that comprise the application) must be added to an application project appropriate for

each mobile platform, then built using the platform’s proprietary tools.

Some supported platform tools run only on certain desktop operating systems, as

� The Android SDK runs on Linux, Microsoft Windows, and Macintosh OS X .

� The BlackBerry SDKs (they have several) run on Microsoft Windows and Macintosh OS X .

� The iOS SDK runs only on Macintosh OS X (no surprise there).

� The Windows Phone SDK runs only on Microsoft Windows (no surprise there either).

Certified Cordova Mobile Application Developer

www.vskills.in Page 6

